1.1 Absolute Value

Absolute value: the distance between a number and zero on the number line.

\[|2| = 2 \]
\[|-3| = 3 \]

absolute value is positive because it is a distance! Distance is always positive.

Compare: \(|1| \) and \(|-4| \)

Order: \(|-5|, 2, |-1|, 10, |-3| \)
\(5, 2, 1, 0, 3 \)

Summary:
1.2 Adding Integers

EQ: Is the sum of two integers positive, negative, or zero?

Integers: positive or negative numbers

Sum → add

2 cases:

Same Sign:
\[5 + 2 = 7 \]
\[-5 + (-2) = -7 \]

* If both numbers have the same sign, you add the numbers and keep the same sign.

Different Signs:
\[5 + (-2) = 3 \]
\[-5 + 2 = -3 \]

* If the numbers have different signs, you subtract and take the sign of the "greater number"

(greater absolute value)

Summary:
1.3 Subtracting Integers

EQ: How are adding and subtracting integers related?

Steps:
1. Keep the first number.
2. Change the subtraction sign to addition.
3. Take the opposite (change the sign) of the second number.

Summary:

Subtracting integers: are just adding the opposite.

Example 1: $10 + (+3)$ "Boom Boom!"

- Change $+$ to $-$.
- Take the opposite of 3.
- $10 + 3 = 13$

Example 2: $-5 + 15$

- Keep $-$.
- Change $+$ to $-$.
- Take the opposite of 15.
- $-5 + 15 = 10$

Example 3: $-8 + (+2)$ "Boom Boom!"

- Keep $-$.
- Change $+$ to $-$.
- Take the opposite of 2.
- $-8 + 2 = -6$

On your own!

1) $7 - (-4)$
 - $7 + 4 = 11$
2) $-8 - 10$
 - $-8 + (-10) = -18$
3) $-5 - (-9)$
 - $-5 + 9 = 4$
4) $-3 - 4 - (-2)$
 - $-3 + 4 = -1$
 - $-1 - (-2) = -1 + 2 = 1$
 - $-7 + 2 = -5$
1.4 Multiplying Integers

* 3 cases *

Case 1: both integers are positive
Example: \(8 \cdot 2 = 16 \)
* positive \(\uparrow \) positive \(\uparrow \) positive
* positive \(\times \) positive = positive

Case 2: integers have different signs.
One is positive and the other is negative
Example: \(-8 \cdot 2 = -16 \)
* negative \(\uparrow \) positive \(\uparrow \) negative
or
\(8 \cdot (-2) = -16 \)
* positive \(\uparrow \) negative \(\uparrow \) negative

* If integers have different signs their product is negative.
* negative \(\times \) positive = negative

Case 3: both integers are negative
Example: \(-8 \cdot (-2) = 16 \)
* negative \(\uparrow \) negative \(\uparrow \) positive
* negative \(\times \) negative = positive

Summary:
1.5 Dividing Integers

5 cases

Case 1: both integers are positive
Example: \(15 \div 5 = 3\)
* positive \(\div\) positive = positive

Case 2: Integers have different signs.
Example: \(-15 \div 5 = -3\) \(\frac{15}{-5} = -3\)
* positive \(\div\) negative = negative

Case 3: both integers are negative
Example: \(-15 \div -5 = 3\) \(-15 \div (-5) = 3\)
* negative \(\div\) negative = positive

Case 4
\[
\frac{15}{0} = \text{undefined}
\]

Case 5
\[
\frac{0}{15} = 0
\]

Find the mean of the numbers
\[
2, 10, 8, 22
\]
\[
2 + (-10) + 8 + 22 = \frac{22}{4} = 5.5
\]

Summary: